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ABSTRACT

Groundwater level declines are largely associated with natural processes and human activities. In particular, the drivers of groundwater

change can be more complex during meteorological drought owing to human activities. However, disentangling their specific contribution

remains poorly understood. By focusing on semiarid ecosystems in the northern Yellow River Basin – the Ordos – here we elucidate the

impact of human activities on the propagation of meteorological droughts to groundwater systems. To comprehensively analyze groundwater

variations, we employ the K-means, categorizing them into four distinct patterns. Based on the Pearson correlation coefficient analysis

between standardized precipitation index (SPI) and groundwater depth (GWD), we found that the majority of lag time for GWD response

to SPI is less than 3 months, and the drivers influencing GWD are classified into three categories: SPI, human activities related to SPI, and

human activities unrelated to SPI. Our results reveal that both meteorological droughts and human activities jointly influence GWD across

the entire region. Notably, human activities unrelated to SPI have the greatest impact in the irrigation district of Ordos, followed by the wes-

tern part of Ordos and the Mu Us sandy land in central Ordos. Our findings can guide us to formulate effective drought management policies

and practices in semiarid regions.
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HIGHLIGHTS

• Groundwater variability in the Ordos, northern Yellow River Basin shows four major patterns.

• The variation of groundwater depth mostly is less than 3-month lag behind the variation of SPI.

• The GWD is mainly influenced by meteorological factors at 60% monitoring wells, but by human activities at the rest.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Groundwater is a critical source of freshwater (Zhang et al. 2019; Scanlon et al. 2023), providing approximately half of the
water used for global irrigation and the majority of the drinking water for domestic needs (Jasechko & Perrone 2021; Noori

et al. 2023). With population growth and increased water demand, groundwater withdrawal has increased eightfold to meet
human needs (Hanasaki et al. 2018; Wada et al. 2014; Bierkens & Wada 2019). Simultaneously, the expansion of irrigated
agriculture has intensified groundwater withdrawal, particularly in semiarid regions where groundwater may be the only

reliable source of water due to the absence of permanent surface water (Wada et al. 2012; Ashraf et al. 2021). Frappart &
Ramillien (2018) found that global groundwater storage has been declining at an increasing rate of depletion. Continuous
decreases in groundwater levels can lead to serious issues, such as land subsidence, seawater intrusion, and a decline in agri-
cultural and industrial productivity (Lin et al. 2022). Therefore, it is crucial to understand the influential factors contributing

to the groundwater decline.
Increases in drought frequency, duration, and intensity have greatly exacerbated groundwater depletion (Zhao et al. 2022).

Given the prevalence of frequent drought events, examining how groundwater depth (GWD) may change in response to

meteorological droughts is crucial. Meteorological droughts exert both direct and indirect impacts on groundwater systems
(Thomas et al. 2017). Direct impacts involve climate variables, such as precipitation, influencing groundwater recharge and
causing fluctuations in groundwater levels (Kubicz et al. 2019). Indirect impacts encompass certain human activities aimed at

alleviating droughts (Shah et al. 2021), which intensify the consumption of groundwater induced by meteorological droughts
(Schober et al. 2018; Yang et al. 2020). Ojha et al. (2018) found that severe droughts resulted in approximately a 2% loss of
total aquifer system storage in California’s Central Valley. Agarwal et al. (2023) discovered that the rate of groundwater water

storage depletion is faster during the drought periods in Central Valley. Long et al. (2013) observed a significant depletion of
water storage, monitored with the GRACE satellite, induced by the 2011 drought in Texas. Previous studies have revealed the
influence of droughts on groundwater, elucidating that the process of propagation from meteorological droughts to ground-
water is also crucial.

Numerous studies have focused on the propagation of meteorological droughts to groundwater in natural states or moni-
toring wells without human elements (Mishra et al. 2018; Aadhar & Mishra 2020). These studies reveal the mechanism by
which natural elements, such as soil moisture (Zhang et al. 2021a), aquifer characteristics (Bloomfield & Marchant 2013),
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and vegetation (Liu et al. 2023), influence the propagation of meteorological droughts to groundwater systems (Apurv et al.
2017). Furthermore, these studies contribute to a deeper understanding of how meteorological droughts influence ground-
water systems. However, human activities complicate the propagation from meteorological droughts to groundwater
systems, and this complexity may exhibit spatial heterogeneity (Zhang et al. 2022b, 2022c). For instance, Yang et al.
(2020) found that human activities reduce the severity of hydrological droughts in the south of China but exacerbate hydro-
logical droughts in the north. While some studies have revealed the intervention of human activities in the influence of
meteorological droughts on streamflow (Tijdeman et al. 2018; Zhang et al. 2022b), research on how the human activities
intervene in the propagation from meteorological droughts to groundwater systems is rare. Given the significant role of

groundwater in water resources and the increasing frequency of drought events due to climate change, it is crucial to uncover
the mechanisms by which meteorological droughts propagate to groundwater systems in regions with high levels of human
activities.

The Ordos, located in the northern Yellow River Basin, is ecologically fragile and frequently disturbed by human activities
(Ma et al. 2019). Serving as an essential ecological barrier in northern China, Ordos has witnessed the implementation of
various ecological restoration projections, including the Natural Forest Conservation Program (NFCP) and the Grain for

Green Program (GFGP) (Feng et al. 2016; Chen et al. 2019). The Mu Us sandy land (MUSL) within Ordos stands as one
of the most successful examples of ecological restoration and desertification reversal (Tian et al. 2015; Zhang & Huisingh
2018). Numerous studies confirm the increasing vegetation coverage in MUSL (Zhang & Wu 2020; Zhao et al. 2020; Sun
et al. 2021), and this vegetation restoration has led to heightened groundwater consumption (Zhang & Wu 2020; Luan
et al. 2023). In addition, farmlands, primarily distributed in the north, rely heavily on groundwater irrigation. Some studies
indicate that groundwater can buffer the impact of drought events on vegetation (Deng et al. 2022) and delay the propagation
from meteorological droughts to agricultural droughts (Fawen et al. 2023).

However, it remains unknown whether the impact of meteorological droughts on groundwater will change under the influ-
ence of human activities, particularly in the semiarid regions with fragile ecosystems. As such, major objectives of this study
are (1) to identify the spatiotemporal variation characteristics of groundwater levels in Ordos; (2) to reveal the intervention of

human activities in the propagation from meteorological droughts to groundwater systems; and (3) to clarify the lag time of
groundwater system’s response to meteorological droughts. The grand aim is to support the local government’s efforts to
manage human activities, thus implementing measures to cope with droughts.

2. MATERIALS AND METHODS

2.1. Study region

The Ordos is located in the northern Yellow River Basin in Northwest China (106°42040″–111°27020″E, 37°35024″–40°
51040″N) (Figure 1). It features a typical semiarid climate characterized by scarce precipitation and high potential evapotran-
spiration (PET). Precipitation in the region ranges from 192 to 400 mm, decreasing from east to west (Guo et al. 2017). Due to

this semiarid climate, groundwater serves as the primary source for drinking, irrigation, and chemical industries (Guangcai
et al. 2008). Statistical results indicate that approximately 64% of water consumption in Ordos is derived from groundwater
(Yin et al. 2012). The heavy reliance on groundwater has led to a significant decline in the groundwater table in Ordos since
the 1990s (Jiang et al. 2018; Zhang et al. 2021b). The main aquifer in Ordos is the thick Cretaceous sandstone with sporadic

clay lenses, constituting an unconfined aquifer with a maximum thickness of around 1,000 m (Guangcai et al. 2008; Jiang
et al. 2018). This aquifer is covered by a thin layer of sand (Xie et al. 2021). Based on geographic features, the Ordos is divided
into three subregions: the north irrigation district (NID), the MUSL, and the west area (WA). These subregions and their

boundaries are shown in Figure 1.

2.2. Data

We used the standardized precipitation index (SPI) (McKee et al. 1993; Xu et al. 2015; Eini et al. 2023) to represent the
meteorological drought, which could be derived from precipitation (see Section 2.3). Here, the monthly precipitation data
from 1970 to 2020 were obtained from the National Tibetan Plateau Data Center Third Pole Environment Data Center

(https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2) at a spatial resolution of 1 km (Shouzhang
2020). The daily GWD data for 67 monitoring wells in the Ordos, covering the period from 2018 to 2022, were sourced
from the local hydrology departments. We used the daily GWD data to cluster the variation of the groundwater dynamics.
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We aggregated the daily GWD data into a monthly scale by averaging them for a better examination of its correlation
with SPI.

2.3. Calculation of the SPI

Precipitation deficit is a key characteristic of meteorological droughts, and precipitation exhibits spatial discrepancies across
different regions. When characterizing drought solely based on precipitation, the comparability of space and time becomes
insufficient, thereby limiting the spatial and temporal scales of studies. Therefore, the SPI was used for monitoring meteor-

ological drought in semiarid regions, which is recommended by the World Meteorological Organization (McKee et al.
1993; Hayes et al. 2011). The SPI, calculated with input from precipitation data, can be calculated at various time scales,
offering substantial flexibility across different time intervals (Vicente-Serrano et al. 2010). Its standardization empowers

the SPI to evaluate precipitation deficit status in diverse regions, demonstrating robust spatial expansibility (Guttman
1998; Vicente-Serrano et al. 2010). The details of the SPI calculation are as follows:

(1) Suppose the precipitation during a period is x, the probability density function following G distribution is as follows:

f(x) ¼ 1
bgG(g)

xg�1e�x=b (1)

where x is the amount of precipitation over consecutive months and b and g are the scale and shape of the distribution,

which are calculated using the maximum likelihood estimation.

ĝ ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4A=3

p
4A

(2)

Figure 1 | The geographical location and underlying surface of Ordos. NID, the north irrigation district; WA, the west area; MUSL, the Mu Us
sandy land.
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b̂ ¼ �x
ĝ

(3)

A ¼ ln �x� 1
n

Xn
i¼1

ln xi (4)

where xi is the ith value in the precipitation series and �x is the average precipitation. The function G(g) is the gamma function
given as

G(g) ¼
ð1
0

ya�1e�ydy (5)

After the probability density parameters are estimated, the cumulative probability of precipitation can be expressed as

F(x) ¼ 1
bgG(g)

ðx
0

xg�1e�x=bdx (6)

SPI ¼ S
t� (c2tþ c1)tþ c0

((d3tþ d2)tþ d1)tþ 1
(7)

where t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

H(x)2

s
and F(x) is the probability distribution of precipitation. When F(x). 0.5, S¼ 1 and H(x) ¼ 1�G(x), and

when F� 0.5, S¼�1 andH(x) ¼ G(x). The variables in Equation (7) are generally taken as c0¼ 2.515517, c1¼ 0.802853, c2¼
1.432788, d1¼ 1.432788, d2¼ 0.189626, and d3¼ 0.001308 (Lloyd-Hughes & Saunders 2002; Asadi Zarch et al. 2015; Xu
et al. 2015; Huang et al. 2017; Tian 2022).

Considering the cumulative effect of meteorological droughts, we calculated the SPI at time scales varying from 1 to 48

months.

2.4. Classified characteristics of groundwater interannual variations

We employed a two-step approach for the GWD clustering. The first step is to realign the GWD time series and measure the
similarity among groundwater time series. In the first step, we used the dynamic time warping (DTW) algorithm. DTW can

find optimal global alignment between sequences (Petitjean et al. 2011) and is widely used to quantify the similarity between
sequences (Kruskall & Liberman 1983; Aach & Church 2001; Bar-Joseph et al. 2002; Gilleland & Roux 2015; Mantas et al.
2015). In this method, each point of the first sequence is compared with any point of the second sequence. Finally, sequences
with similar patterns that occurred in different periods are considered similar (Izakian et al. 2015). In the second step, we

used the K-means algorithm to cluster rescaled time series. K-means is one of the most widely used algorithms for clustering
(Fejes Tóth 1959; Ball & Hall 1965; MacQueen 1967; Lloyd 1982), because of its simplicity, efficiency, and empirical success
(Jain 2010). In this study, we wrote a program in the Python language and performed the two successive steps: DTW

algorithm and K-means clustering.

2.5. Identifying the major contributors to changes in GWD

The Pearson correlation coefficient (PCC) is used to reflect the strength of relationships between SPI and GWD. For two vari-
ables X and Y (which are SPI and GWD in this study), PCC can be expressed as

PCC ¼ E(XY)� E(X)E(Y)ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(X)

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(Y)

p (8)

where E(X), E(Y), and E(XY) are the expectations and s2(X) and s2(Y) are the variances.
In this study, we calculated the PCC between GWD and SPI at time scales ranging from 1 to 48 months to identify the time

scale of SPI with the most significant impact on GWD. If the SPI has impacts on GWD, the PCC between SPI and GWD is
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negative. The time scale of SPI with the minimum PCC is considered to have the greatest impact on GWD. We categorize

drivers based on the absolute value of the PCC and the p-value into three categories. When |PCC|. 0.5 and p, 0.05, SPI
has a strong and significant impact on GWD, and the primary driver influencing the GWD is SPI alone. When |PCC|,
0.5 and p, 0.05, SPI has a weak but significant impact on GWD, with its influence disturbed by human activities related

to meteorological droughts, such as irrigation and ecological restoration (Udovičić et al. 2007; Feng et al. 2020). When
p. 0.05, the impact of SPI on GWD is insignificant, and the primary drivers influencing GWD are human activities unrelated
to meteorological droughts, such as managed groundwater recharge projects.

2.6. Calculation of lag time

Typically, the variation in GWD lags behind the variation in SPI. To determine the lag time, we calculated the PCC between

GWD and SPI for the preceding 1–48 months. Similarly, the month with the minimum PCC between GWD and SPI is con-
sidered the lag time for GWD’s response to meteorological droughts, which has been widely used in drought propagation
studies (Zhang & Jia 2013; Wang et al. 2017; Wan et al. 2023).

3. RESULTS

3.1. Variation of groundwater table

The variations in groundwater table observations in Ordos are categorized into four patterns, as illustrated in Figure 2. For the
first pattern, the groundwater table consistently increases over time (Figure 2(a)). The second pattern is a zigzag pattern in the
fluctuation of the groundwater table, with an overall declining trend, suggesting frequent and excessive water extraction

(Figure 2(b)). The third one shows seasonal fluctuations in the groundwater table, decreasing in summer and increasing in
winter, maintaining a relatively flat interannual scale (Figure 2(c)). This pattern indicates a balance between groundwater
recharge and discharge, possibly influenced by precipitation or moderate seasonal human activities. Figure 2(d) displays

that in the fourth pattern, the groundwater table also fluctuates seasonally, but with overall decreasing trends. This pattern
could be due to excessive seasonal water extraction, such as in the case of excessive irrigation.

The spatial distribution of all monitoring wells clustered to the four patterns is also shown in Figure 2(e). Initially, we
hypothesized that the variation in the groundwater table might be influenced by land use classification, and the monitoring

wells in each category would follow distinct spatial rules. However, the spatial distribution rules for each category are not
evident. This means the land use classification is not the direct factor influencing the groundwater dynamics. Since meteor-
ological factors and human activities are common factors influencing groundwater dynamics, we further use statistical

methods to explore the driving factors of groundwater dynamics.

3.2. Correlation between GWD and SPI

Correlation analysis is employed to identify the drivers influencing GWD in each monitoring well. Figure 3(a) illustrates the
results of the correlation analysis between GWD and SPI. The range of PCC values for Ordos is �0.072 to �0.826, where the
MUSL and WA have most of the monitoring wells with strong negative correlations (�0.212 to �0.822) while the NID has a

higher proportion of SPI-unrelated wells. Following the classification criteria mentioned in Section 2.5 and considering the
PCC values, the identified drivers include SPI, human activities related to SPI, and human activities unrelated to SPI. The
spatial distribution of each driver influencing GWD is depicted in Figure 3(b). The majority of the monitoring wells in

Ordos are dominated by SPI, while some monitoring wells, primarily in the NID, are strongly influenced by human activities
unrelated to SPI. Figure 3(c) presents the statistical results of drivers influencing GWD. In the MUSL, 69.05% of monitoring
wells are influenced by SPI, 26.19% by human activities related to SPI, and 4.76% by human activities unrelated to SPI. In the

WA, 50% of monitoring wells are influenced by SPI, 37.5% by human activities related to SPI, and 12.5% by human activities
unrelated to SPI. In the NID, half the monitoring wells are influenced by SPI and 43.75% are influenced by human activities
unrelated to SPI. Overall, human activities unrelated to SPI have the greatest impact on the NID, followed by the WA and the

MUSL.

3.3. Lag time of GWD in response to SPI

The lag time of the GWD response to SPI is depicted in Figure 4. In 4.88% of monitoring wells, the GWD responds to SPI at
the current month, and in 63.41% of monitoring wells, the lag time of the GWD response to SPI is 1 month, while 14.63% of
monitoring wells exhibit a lag time of 2 months. In the remaining monitoring wells, the lag times of GWD response to SPI are
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3, 7, 9, and even more than 12 months in three monitoring wells. Figure 5 depicts the relationship between GWD and lag

times. As shown in Figure 5(a), in the monitoring wells influenced by SPI, GWD at a lag of more than 12 months exceeds
that at a lag of 0–3 months in response to SPI. In Figure 5(b), for monitoring wells impacted by human activities, GWD
with a lag response to SPI of 0–3 months is slightly greater than that with a lag time of more than 12 months in response

Figure 2 | The variation of groundwater table from 2018 to 2022 in Ordos. (a–d) Four patterns of the variation of the groundwater table.
The vertical axis represents the standardized water stable. (e) The spatial distribution of each category of groundwater table.
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to SPI. Therefore, under natural conditions, deep groundwater levels can delay its response to meteorological droughts, and
human activities disrupt the propagation from meteorological droughts to GWD.

4. DISCUSSION

4.1. Four patterns of groundwater dynamics in Ordos

The groundwater dynamics are divided into four patterns in Ordos. The first pattern is continuously increasing. This may be

caused by irrigation-driven deep percolation (Huo et al. 2011). It can also be attributed to the geological structure. For
instance, Guangcai et al. (2008) found that the NID belongs to the Cretaceous Aquifer System, where precipitation is the
major recharge source and groundwater flow is controlled by topography. Due to the higher topography than surrounding

areas, there may be no lateral recharge from the surrounding groundwater systems. Chen et al. (2024) found a similar increas-
ing pattern in southeastern Australia during the millennial drought period and believe that the increasing trends may be
related to lateral recharge from mountainous areas. The second pattern is jagged decreasing, which may be caused by fre-
quent anthropogenic abstraction for industry. The third and fourth patterns are both seasonal fluctuations, while the third

one is annually flat and the fourth one decreases annually. The crop growth season in Ordos is fromMay to October. Accord-
ing to Figure 2(c) and 2(d), the groundwater table decreases during the crop growth season and then increases after
harvesting. Therefore, we infer that the third and fourth patterns are caused by irrigation extraction (Ju et al. 2012). If the
extraction is similar in magnitude to the recharge, the annual groundwater table is relatively stable and belongs to the
third pattern. If the groundwater abstraction is larger than the recharge, the water table decreases annually, belonging to
the fourth pattern.

Figure 3 | Correlation analysis between GWD and SPI. (a) PCC between GWD and SPI of each monitoring well. (b) The spatial distribution of
drivers influences the variation of GWD. (c) The percentage of each driver in MUSL, WA, and NID.
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4.2. Interactions between meteorological droughts, human activities, and groundwater dynamics

Groundwater recharge occurs through precipitation and various human activities, such as irrigation recharging (Jasechko

et al. 2014; Qi et al. 2023), while discharge is facilitated by evapotranspiration and pumping (Doble et al. 2006). In semiarid
regions, precipitation plays a crucial role in the variability of GWD (Luan et al. 2023). To elucidate the impacts of meteor-
ological droughts on GWD, we calculated the SPI as the meteorological drought indicator and analyzed the correlation

relationship between SPI and GWD. The strong and significant correlations between SPI and GWD in more than 60% of

Figure 4 | The lag time of GWD response to SPI in each monitoring well. The pie graph shows the percentage of monitoring wells with
different lag times. The red points represent the monitoring wells influenced by SPI, and the gray points represent the monitoring wells
disturbed by human activities.

Figure 5 | The relationship between lag time and GWD in the monitoring wells influenced by SPI (a) and human activities (b).
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monitoring wells in Ordos suggest that the variability of GWD is primarily influenced by meteorological conditions. Less pre-

cipitation affects groundwater resources by decreasing soil water infiltration (Han et al. 2021).
A weak but still significant correlation in some monitoring wells indicates that human activities disturb the propagation

from meteorological droughts to GWD, particularly activities related to meteorological droughts, such as irrigation in NID

and ecological restoration in MUSL. In the dry season, deficit precipitation increases water demand, leading to more
groundwater extraction to alleviate water stress for crops, consequently lowering the groundwater table (Zhang et al.
2021a). However, in wet seasons, sufficient irrigation may not raise the groundwater table due to reduced water availability
for recharge (Zomlot et al. 2015; Lorenzo-Lacruz et al. 2017). In ecology, densely populated artificial revegetation increases

groundwater extraction and may intensify the groundwater drought in the dry season (Lu et al. 2018; Han et al. 2020)
because vegetation roots extract more groundwater for transpiration, especially in dry years (Wu et al. 2016). Some studies
demonstrate that revegetation can improve soil conditions and enhance infiltration, but groundwater is not recharged due

to the transpiration with additional soil moisture in semiarid regions (Bartley et al. 2006; Teuling et al. 2013; Gao et al.
2015). In general, vegetation responds to water stress by partially closing the stomata to reduce transpiration, which
limits the carbon uptake by photosynthesis (Peters et al. 2018). Over places with deficit and deep groundwater, drought

results in the reduction of gross primary production (Zhang et al. 2022a). Shallow and sufficient groundwater can maintain
the stomatal conductance opening and buffer the effects of drought on vegetation (Meinzer et al. 2016; Deng et al. 2022).
Therefore, overexploitation of groundwater for irrigation or over-revegetation will decrease groundwater availability, which

aggravates the response of vegetation and agriculture to drought (Wu et al. 2017). In addition, water in reservoirs can con-
tinuously recharge groundwater, disrupting the propagation from meteorological droughts to groundwater systems (Apurv
et al. 2017).

There is still a part of monitoring wells where GWD has an insignificant correlation relationship with SPI, likely due to

human activities unrelated to meteorological droughts, such as managed aquifer recharge projects. In the pursuit of sustain-
able development in Ordos, the local government artificially replenishes groundwater to strike a balance between
exploitation and replenishment. Coal mining is also an anthropometric intervention for groundwater dynamics. Ordos is

rich in coal resources, and Xie et al. (2018) found that large-scale mining may damage the stratum structure of the
mining area and lead to groundwater loss. The lack of correlation between meteorological droughts and groundwater
tables is also observed in some studies. For instance, Lorenzo-Lacruz et al. (2017) found that tourism pressure exacerbates

groundwater exploitation during summer, leading to an insignificant correlation relationship between SPI and the standar-
dized groundwater index. Wendt et al. (2021) found that managed aquifer recharge significantly reduced groundwater in
both duration and magnitude. Another possible reason for the insignificant impacts of meteorological droughts on
GWD may be the continuous overuse of groundwater (Wendt et al. 2021), where groundwater abstraction surpasses pre-

cipitation recharge, resulting in an increase in precipitation but a decline in the groundwater table. The intervention of
human activities in groundwater is various. Irrigation and revegetation reduce the groundwater, coal mining changes the
geological structure, and reservoirs and managed aquifer recharge projects change the natural process of groundwater

recharge. These human activities complicate the groundwater dynamics, which enhances the difficulty of water resource
prediction and management.

4.3. Lag time analysis of SPI and GWD

The lag time represents the speed of propagation of meteorological drought to groundwater systems (Schuler et al. 2022). The
length of lag time that GWD responds to SPI is related to the depth of groundwater level. Throughout the region, the average

GWD with a lag time of 0–3 months is much smaller than the average GWD with a lag time larger than 12 months because
the surface water needs more time to recharge groundwater when the groundwater table is deeper (Schreiner-McGraw &
Ajami 2021). Some monitoring wells exhibit abnormal GWD with a lag time of 0–3 months, closely resembling the average
GWD with a lag time larger than 12 months. This abnormality may be caused by human activities related to meteorological

droughts, such as irrigation. During meteorological droughts, farmers tend to extract more groundwater to alleviate water
stress on crops. During such times, the GWD has no impact on the lag time of GWD responding to meteorological droughts.
Similarly, ecological restoration in semiarid regions may also intervene in the influence of GWD on the lag time. In general,

vegetation species used for ecological restoration are drought-tolerant, with well-developed root systems (Liu et al. 2021). The
drier climate can trigger plants to extend their roots to abstract deeper groundwater and reduce water stress (Liu et al. 2021).
Consequently, the lag time of GWD to meteorological droughts may be shortened.
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4.4. Indicators for meteorological droughts

Both SPI and the standardized precipitation evapotranspiration index (SPEI) serve as crucial indicators for meteorological
droughts (McKee et al. 1993; Vicente-Serrano et al. 2010; Yao et al. 2018). Given the relatively small size of Ordos, it necessi-

tates data with fine spatial resolution. The calculation of SPEI relies on the key variable of PET (Vicente-Serrano et al. 2010).
There are three common equations for calculating PET, namely, the Penman–Monteith equation, the Thornthwaite equation
(Thornthwaite 1948), and the Hargreaves equation (Hargreaves & Samani 1985). Among these, Thornthwaite and Har-
greaves methods focus solely on temperature, while the Penman–Monteith equation considers multiple meteorological

factors influencing PET, including wind speed, relative humidity, radiation, and air pressure (Adnan et al. 2021; Cao et al.
2022). Due to the lack of high-precision products of wind speed and relative humidity, the Penman–Monteith equation is
not adopted in this study. Some studies have challenged the conventional belief that temperature is the primary meteorolo-

gical driver influencing PET in semiarid regions. For instance, Liu et al. (2024) found that relative humidity is the most
sensitive factor for PET in semiarid regions. Yin et al. (2021) found that the PET in the Chinese northwest arid regions is
more sensitive to radiation, wind speed, and relative humidity than average temperature during the growth season. Therefore,

relying solely on temperature for calculating PET could introduce uncertainties. These uncertainties may further accumulate
into SPEI, potentially impacting the final analysis.

5. CONCLUSIONS

This study explores the variation of GWD in Ordos, the northern Yellow River Basin, and distinguishes the impacts of meteor-
ological droughts and human activities on the GWD. There are four patterns of groundwater dynamics in Ordos, including
continuous increased pattern, jagged declined pattern, fluctuated seasonally but annual stable pattern, and fluctuated season-

ally but declined overall. We found that the GWD in Ordos is influenced by both meteorological droughts and human
activities, and the GWD is influenced by meteorological factors at the majority of monitoring wells. The lag time of GWD
response to meteorological droughts is related to the absolute magnitude of GWD, and most of the lag times are less than
3 months. Our results are helpful for local governments to manage human activities and implement measures to cope

with droughts. For instance, predicting meteorological factors accurately at seasonal to annual scales can increase the predic-
tion skill for groundwater dynamics and prepare drought mitigations in advance. Furthermore, promoting water-saving
irrigated agriculture and revegetating moderately is a practical way to avoid overexploitation of groundwater. Nevertheless,

our study is limited by data availability, making quantification of human activities challenging. Furthermore, GWD may be
influenced by multiple human activities, and how to isolate the impact of each human activity on GWD deserves future
exploration.
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Udovičić, M., Baždarić, K., Bilić-Zulle, L. & Petrovečki, M. 2007 What we need to know when calculating the coefficient of correlation?

Biochem Med (Zagreb) 17, 10–15.
Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. 2010 A multiscalar drought index sensitive to global warming: The standardized

precipitation evapotranspiration index. Journal of Climate 23 (7), 1696–1718.
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. 2012 Nonsustainable groundwater sustaining irrigation: A global assessment. Water

Resources Research 48 (6), 335–344.
Wada, Y., Wisser, D. & Bierkens, M. F. P. 2014 Global modeling of withdrawal, allocation and consumptive use of surface water and

groundwater resources. Earth System Dynamics 5 (1), 15–40.
Wan, F., Zhang, F., Wang, Y., Peng, S. & Zheng, X. 2023 Study on the propagation law of meteorological drought to hydrological drought

under variable time scale: An example from the Yellow River Water Supply Area in Henan. Ecological Indicators 154, 110873.
Wang, Y., Chen, X., Chen, Y., Liu, M. & Gao, L. 2017 Flood/drought event identification using an effective indicator based on the

correlations between multiple time scales of the standardized precipitation index and river discharge. Theoretical and Applied
Climatology 128 (1), 159–168.

Wendt, D. E., Van Loon, A. F., Scanlon, B. R. & Hannah, D. M. 2021 Managed aquifer recharge as a drought mitigation strategy in heavily-
stressed aquifers. Environmental Research Letters 16 (1), 014046.

Wu, Y., Liu, T., Paredes, P., Duan, L., Wang, H., Wang, T. & Pereira, L. S. 2016 Ecohydrology of groundwater-dependent grasslands of the
semi-arid Horqin sandy land of inner Mongolia focusing on evapotranspiration partition. Ecohydrology 9 (6), 1052–1067.

Wu, H., Qian, H., Chen, J. & Huo, C. 2017 Assessment of agricultural drought vulnerability in the Guanzhong Plain, China. Water Resources
Management 31 (5), 1557–1574.

Xie, X., Xu, C., Wen, Y. & Li, W. 2018 Monitoring groundwater storage changes in the Loess Plateau using GRACE satellite gravity data,
hydrological models and coal mining data. Remote Sensing 10 (4), 605.

Xie, H.-Y., Jiang, X.-W., Tan, S.-C., Wan, L., Wang, X.-S., Liang, S.-H. & Zeng, Y. 2021 Interaction of soil water and groundwater during the
freezing–thawing cycle: Field observations and numerical modeling. Hydrology and Earth System Sciences 25 (8), 4243–4257.

Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y. & Shen, Y. 2015 Spatio-temporal variation of drought in China during 1961–2012: A climatic
perspective. Journal of Hydrology 526, 253–264.

Yang, X., Zhang, M., He, X., Ren, L., Pan, M., Yu, X., Wei, Z. & Sheffield, J. 2020 Contrasting influences of human activities on hydrological
drought regimes over China based on high-resolution simulations. Water Resources Research 56 (6), e2019WR025843.

Hydrology Research Vol 55 No 9, 934

Downloaded from http://iwaponline.com/hr/article-pdf/55/9/921/1483755/nh2024052.pdf
by guest
on 23 November 2024

http://dx.doi.org/10.1016/j.patcog.2010.09.013
http://dx.doi.org/10.1016/j.scitotenv.2022.161106
http://dx.doi.org/10.1016/j.scitotenv.2022.161106
http://dx.doi.org/10.1038/s43017-022-00378-6
http://dx.doi.org/10.1038/s43017-022-00378-6
http://dx.doi.org/10.1213/ANE.0000000000002864
http://dx.doi.org/10.1016/j.jhydrol.2021.126917
http://dx.doi.org/10.1016/j.jhydrol.2021.126917
http://dx.doi.org/10.1016/j.jhydrol.2022.128277
http://dx.doi.org/10.1016/j.jhydrol.2022.128277
http://dx.doi.org/10.1016/j.scitotenv.2021.144959
http://dx.doi.org/10.1016/j.scitotenv.2021.144959
http://dx.doi.org/10.1002/grl.50495
http://dx.doi.org/10.1016/j.rse.2017.06.026
http://dx.doi.org/10.1016/j.rse.2017.06.026
http://dx.doi.org/10.2307/210739
http://dx.doi.org/10.1016/j.ecoleng.2015.04.098
http://dx.doi.org/10.1016/j.ecoleng.2015.04.098
http://dx.doi.org/10.1029/2017WR022412
http://dx.doi.org/10.1029/2017WR022412
http://dx.doi.org/10.11613/BM.2007.002
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1029/2011WR010562
http://dx.doi.org/10.5194/esd-5-15-2014
http://dx.doi.org/10.5194/esd-5-15-2014
http://dx.doi.org/10.1016/j.ecolind.2023.110873
http://dx.doi.org/10.1016/j.ecolind.2023.110873
http://dx.doi.org/10.1007/s00704-015-1699-0
http://dx.doi.org/10.1007/s00704-015-1699-0
http://dx.doi.org/10.1088/1748-9326/abcfe1
http://dx.doi.org/10.1088/1748-9326/abcfe1
http://dx.doi.org/10.1002/eco.1702
http://dx.doi.org/10.1002/eco.1702
http://dx.doi.org/10.1007/s11269-017-1594-9
http://dx.doi.org/10.3390/rs10040605
http://dx.doi.org/10.3390/rs10040605
http://dx.doi.org/10.5194/hess-25-4243-2021
http://dx.doi.org/10.5194/hess-25-4243-2021
http://dx.doi.org/10.1016/j.jhydrol.2014.09.047
http://dx.doi.org/10.1016/j.jhydrol.2014.09.047
http://dx.doi.org/10.1029/2019WR025843
http://dx.doi.org/10.1029/2019WR025843


Yao, N., Li, Y., Lei, T. & Peng, L. 2018 Drought evolution, severity and trends in mainland China over 1961–2013. Science of The Total
Environment 616–617, 73–89.

Yin, L., Zhang, E., Wang, X., Wenninger, J., Dong, J., Guo, L. & Huang, J. 2012 A GIS-based DRASTIC model for assessing groundwater
vulnerability in the Ordos Plateau, China. Environmental Earth Sciences 69 (1), 171–185.

Yin, X., Wu, Y., Zhao, W., Zhao, F., Sun, P., Song, Y. & Qiu, L. 2021 Drought characteristics and sensitivity of potential evapotranspiration to
climatic factors in the arid and semi-arid areas of northwest China. Hydrogeology & Engineering Geology 48 (3), 20–30.

Zhang, Z. & Huisingh, D. 2018 Combating desertification in China: Monitoring, control, management and revegetation. Journal of Cleaner
Production 182, 765–775.

Zhang, A. & Jia, G. 2013 Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote
Sensing of Environment 134, 12–23.

Zhang, M. & Wu, X. 2020 The rebound effects of recent vegetation restoration projects in Mu Us sandy land of China. Ecological Indicators
113, 106228.

Zhang, K., Xie, X., Zhu, B., Meng, S. & Yao, Y. 2019 Unexpected groundwater recovery with decreasing agricultural irrigation in the Yellow
River Basin. Agricultural Water Management 213, 858–867.

Zhang, H., Ding, J., Wang, Y., Zhou, D. & Zhu, Q. 2021a Investigation about the correlation and propagation among meteorological,
agricultural and groundwater droughts over humid and arid/semi-arid basins in China. Journal of Hydrology 603, 127007.

Zhang, Z., Wang, W., Gong, C., Zhao, M., Franssen, H. H. & Brunner, P. 2021b Salix psammophila afforestations can cause a decline of the
water table, prevent groundwater recharge and reduce effective infiltration. Science of The Total Environment 780, 146336.

Zhang, H., Zhan, C., Xia, J., Yeh, P. J. F., Ning, L., Hu, S. & Wang, X.-S. 2022a The role of groundwater in the spatio-temporal variations of
vegetation water use efficiency in the Ordos Plateau, China. Journal of Hydrology 605, 127332.

Zhang, T., Su, X., Zhang, G., Wu, H., Wang, G. & Chu, J. 2022b Evaluation of the impacts of human activities on propagation from
meteorological drought to hydrological drought in the Weihe River Basin, China. Science of The Total Environment 819, 153030.

Zhang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S., Xu, Y. & Hao, F. 2022c Drought propagation under global warming: Characteristics,
approaches, processes, and controlling factors. Science of The Total Environment 838 (Pt 2), 156021.

Zhao, M., Zhang, J., Velicogna, I., Liang, C. & Li, Z. 2020 Ecological restoration impact on total terrestrial water storage. Nature
Sustainability 4 (1), 56–62.

Zhao, A., Xiang, K., Zhang, A. & Zhang, X. 2022 Spatial-temporal evolution of meteorological and groundwater droughts and their
relationship in the North China Plain. Journal of Hydrology 610, 127903.

Zomlot, Z., Verbeiren, B., Huysmans, M. & Batelaan, O. 2015 Spatial distribution of groundwater recharge and base flow: Assessment of
controlling factors. Journal of Hydrology: Regional Studies 4, 349–368.

First received 16 April 2024; accepted in revised form 30 July 2024. Available online 28 August 2024

Hydrology Research Vol 55 No 9, 935

Downloaded from http://iwaponline.com/hr/article-pdf/55/9/921/1483755/nh2024052.pdf
by guest
on 23 November 2024

http://dx.doi.org/10.1016/j.scitotenv.2017.10.327
http://dx.doi.org/10.1007/s12665-012-1945-z
http://dx.doi.org/10.1007/s12665-012-1945-z
http://dx.doi.org/10.1016/j.jclepro.2018.01.233
http://dx.doi.org/10.1016/j.rse.2013.02.023
http://dx.doi.org/10.1016/j.agwat.2018.12.009
http://dx.doi.org/10.1016/j.agwat.2018.12.009
http://dx.doi.org/10.1016/j.scitotenv.2021.146336
http://dx.doi.org/10.1016/j.scitotenv.2021.146336
http://dx.doi.org/10.1016/j.jhydrol.2021.127332
http://dx.doi.org/10.1016/j.jhydrol.2021.127332
http://dx.doi.org/10.1016/j.scitotenv.2022.153030
http://dx.doi.org/10.1016/j.scitotenv.2022.153030
http://dx.doi.org/10.1016/j.scitotenv.2022.156021
http://dx.doi.org/10.1016/j.scitotenv.2022.156021
http://dx.doi.org/10.1038/s41893-020-00600-7

	Both meteorological droughts and human activities modulated groundwater variations in the northern Yellow River Basin
	INTRODUCTION
	MATERIALS AND METHODS
	Study region
	Data
	Calculation of the SPI
	Classified characteristics of groundwater interannual variations
	Identifying the major contributors to changes in GWD
	Calculation of lag time

	RESULTS
	Variation of groundwater table
	Correlation between GWD and SPI
	Lag time of GWD in response to SPI

	DISCUSSION
	Four patterns of groundwater dynamics in Ordos
	Interactions between meteorological droughts, human activities, and groundwater dynamics
	Lag time analysis of SPI and GWD
	Indicators for meteorological droughts

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES


